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Jet progress, G. Salam (p. 2)

Introduction

Jets essentially project away the multiparticle dynamics, so as to leave
a simple picture of what happened in an event:

jet
definition

Jets are as close as we can get to a single hard quark or gluon:

◮ A jet has almost the same momentum as the ‘initiating parton’

◮ A jet may maintain heavy flavour from the initiating parton

But projection to jets is fundamentally ambiguous, reflecting

divergent and quantum-mechanical nature of QCD.

➥ A RICH SUBJECT
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Introduction Jet Definition History

◮ Periodic key developments in jet definitions spurred by
ever-increasing experimental sophistication.

◮ Approach of LHC provides motivation for taking a new,
fresh, systematic look at jets.

◮ This talk: some of the discoveries along the way

 1975  1980  1985  1990  1995  2000  2005

Tev Run II wkshp
(midpoint cone)Sterman

Weinberg

UA1+2 cones

Jade, seq. rec.
Snowmass (cone)

kt
Cambridge

Aachen

Definitions shown are those with widest exptl. impact

NB: also ARCLUS, OJF, . . .
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Introduction What’s new for jets @ LHC?

Number of particles:

Experiment N

LEP, HERA 50
Tevatron 100–400
LHC low-lumi 800
LHC high-lumi 4000
LHC PbPb 30000

Range of processes:

◮ jets, tt̄, tj , W j, Hj, tt̄j , WW j, W jj, ...

◮ Many NLO calculations being done

◮ 50 people × 10 years ($30 − 50M)

◮ Multijet-NLO calculations only make
sense for infrared safe jet definitions

Physics scales:

Experiment Physics Scale

LEP, HERA Electroweak 100 GeV
+ Hadronisation 0.5 GeV

Tevatron + Underlying event 2.5 − 5 GeV

LHC + BSM 1 TeV?
+ Pileup 5 − 20 GeV
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Introduction This talk

Three (short) parts

◮ Technical advances
◮ kt and Cam/Aachen speed Cacciari & GPS ’05
◮ seedless cone ↔ IR safety + speed GPS & Soyez ’07

◮ Understanding of jet-alg. behaviour
◮ Jet areas Cacciari, GPS & Soyez, prelim.
◮ Hadronisation Cacciari, Dasgupta, Magnea & GPS, prelim.

◮ Using understanding to make better algorithms
◮ Area-based subtraction Cacciari & GPS ’07
◮ The flavour-kt alg, and b-jets Banfi, GPS & Zanderighi ’06–07
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Introduction Two classes of jet algorithm

Sequential recombination Cone

kt , Jade, Cam/Aachen, . . .

Bottom-up:
Cluster ‘closest’ particles repeat-
edly until few left → jets.

Works because of mapping:
closeness ⇔ QCD divergence

Loved by e+e−, ep and theorists

UA1, JetClu, Midpoint, . . .

Top-down:
Find coarse regions of energy flow
(cones), and call them jets.

Works because QCD only modifies

energy flow on small scales

Loved by pp and few(er) theorists
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Technical advances Sequential recombination algorithms

kt algorithm

◮ Find smallest of all dij= min(k2
ti , k

2
tj )∆R2

ij/R
2 and diB = k2

i

◮ Recombine i , j (if iB : i → jet)

◮ Repeat
‘Trivial’ computational issue:

◮ for N particles: N2 dij searched
through N times = N3

◮ 4000 particles (or calo cells): 1 minute
NB: often study 107 − 108 events

Advance #1: factorise momentum and geometry

Borrow methods & tools from Computational Geometry:
Bucketing, dynamic Voronoi diagrams, CGAL, Chan CP

Time reduced to Nn or N ln N: 25ms for N=4000. Cacciari & GPS ’05
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Technical advances [Stable] Cone algorithms

Modern cone algs have two main steps:

◮ Find some/all stable cones
≡ cone pointing in same direction as the momentum of its contents

◮ Resolve cases of overlapping stable cones
By running a ‘split–merge’ procedure
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By running a ‘split–merge’ procedure

How do you find the stable cones?

◮ Iterate from ‘seed’ particles
Done originally, very IR unsafe, N2

◮ Iterate from ‘midpoints’ between cones from
seeds Midpoint cone, less IR unsafe, N3

◮ Seedless: try all subsets of particles IR safe, N2N

100 particles: 1017 years



Jet progress, G. Salam (p. 8)

Technical advances [Stable] Cone algorithms

Modern cone algs have two main steps:

◮ Find some/all stable cones
≡ cone pointing in same direction as the momentum of its contents

◮ Resolve cases of overlapping stable cones
By running a ‘split–merge’ procedure

How do you find the stable cones?

◮ Iterate from ‘seed’ particles
Done originally, very IR unsafe, N2

◮ Iterate from ‘midpoints’ between cones from
seeds Midpoint cone, less IR unsafe, N3

◮ Seedless: try all subsets of particles IR safe, N2N

100 particles: 1017 years



Jet progress, G. Salam (p. 8)

Technical advances [Stable] Cone algorithms

Modern cone algs have two main steps:

◮ Find some/all stable cones
≡ cone pointing in same direction as the momentum of its contents

◮ Resolve cases of overlapping stable cones
By running a ‘split–merge’ procedure

How do you find the stable cones?

◮ Iterate from ‘seed’ particles
Done originally, very IR unsafe, N2

◮ Iterate from ‘midpoints’ between cones from
seeds Midpoint cone, less IR unsafe, N3

◮ Seedless: try all subsets of particles IR safe, N2N

100 particles: 1017 years



Jet progress, G. Salam (p. 9)

Technical advances Cones & IR safety

Among consequences of IR unsafety:

Last meaningful order

It. cone MidPoint
Inclusive jets LO NLO
W /Z + 1 jet LO NLO
3 jets none LO
W /Z + 2 jets none LO
mjet in 2j + X none none

Recall $30− 50M investment in NLO

Advance #2: IR safe seedless cone separate mom. and geometry (again)

New comp. geometry techniques: 2D all distinct circular enclosures
Then for each check whether → stable cone

Time reduced from N2N to N2 ln N: 6s for N=4000. GPS & Soyez ’07
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Technical advances Status in 2005
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2005

3.4 GHz P4, 2 GB

R=0.7

Single package, FastJet, to access all developments, natively (kt ,
Cam/Aachen) or as plugins (SISCone): Cacciari, GPS & Soyez ’05–07

http://www.lpthe.jussieu.fr/∼salam/fastjet/

http://www.lpthe.jussieu.fr/~salam/fastjet/
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Technical advances Status in 2007
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Understanding jet-algs Jet Folklore

Jet discussions: polarised, often driven by unquantified statements

Instead let’s quantify things:

◮ Areas = susceptibility to pileup and underlying event (UE)

◮ Hadronisation = change in momentum from parton → hadron level
(excluding UE)
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Understanding jet-algs Jet areas

Can show that jet area goes as:

A = A0 + D
CF/A

πb0
ln

αs(Q0)

αs(Rpt)
+ O

(

α2
s ln p2

t

)

Cacciari, GPS & Soyez, prelim

Passive area: suscept. to point-like radiation:

A0/πR2 D/πR2

kt 1 0.56
Cam/Aachen 1 0.08
SISCone 1 −0.06

◮ Analytical calcs capture main MC features

◮ kt has larger area than cone, neither is πR2

◮ Cam/Aachen is closest to πR2
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Understanding jet-algs Hadronisation

How does the jet pt change in parton → hadron transition?

Methods from e+e− event shapes predict same at LO for all algs:

quark jets: δpt ≃ −
0.5 GeV

R
+ O (R)

gluon jets: δpt ≃ −
1.1 GeV

R
+ O (R)

Cacciari, Dasgupta, Magnea & GPS, prelim
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Understanding jet-algs

These and other results help produce a quantitative picture of jet
behaviour:

◮ Similarities between algorithms are greater than differences

◮ Once you have tools to quantify behaviours of algorithms you can start
to think about designing new, better procedures and algorithms

Illustrations that follow:

◮ subtraction of pileup based on jet areas

◮ properly incorporating the ‘flavour dimension’ into the kt algorithm.
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Getting more from jet-algs Area-based subtraction

Basic Procedure:

◮ Use pt/A from majority of jets (pileup
jets) to get level, ρ, of pileup and UE in
event

◮ Subtract pileup from hard jets:

pt → pt,sub = pt − Aρ

Cacciari & GPS ’07

Illustration:

◮ semi-leptonic tt̄ production at LHC

◮ high-lumi pileup (∼ 20 ev/bunch-X)

Same simple procedure works for

a range of algorithms
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pt → pt,sub = pt − Aρ

Cacciari & GPS ’07

Illustration:

◮ semi-leptonic tt̄ production at LHC

◮ high-lumi pileup (∼ 20 ev/bunch-X)

Same simple procedure works for

a range of algorithms
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Getting more from jet-algs Subtraction for Pb Pb at LHC

Example: inclusive jet spectrum

◮ Speed makes it easy to run kt

and Cam/Aachen on all 30k
particles in HI event

◮ Subtraction provides a way to get
sensible results, without biases
from cut on low-pt particles.
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Getting more from jet-algs Heavy-flavour jets

One of the least accurate NLO predictions is for b-jets: ± ∼ 50%
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=0.75 merge=0.7, fconeMidPoint jets, R
-1 L ~ 300 pb∫ = 1.96 TeV, s

|Y|<0.7

CDF RunII Preliminary

Experimental definition

◮ Run normal jet-algorithm

◮ a jet containing ≥ 1 b, b̄ is a b-jet.

Even though mb ≪ pt , this b-jet def-
inition requires a fully massive calcu-
lation, and higher order terms are en-

hanced by powers of ln pt/mb.

FCR = LO; FEX+GSP = NLO
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Getting more from jet-algs Flavour-kt

Jet with b and b̄ is not a b-jet

Non-trivial experimentally

But removes many logs

‘Flavour-kt ’ distance measure:

dij =
∆R2

ij

R2
×

{

min(k2
ti , k

2
tj) harder is 6b

max(k2
ti , k

2
tj) harder is b

Reflects different divergences for q, g

This allows one to

◮ Resum remaining logs in b-PDF
Collinear factorisation

◮ No logs left → take massless limit

◮ Bring uncertainty down from

50% to 15%.

Banfi, GPS & Zanderighi ’06, ’07
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Conclusions Conclusions

Major technical advances in computational aspects of jet-clustering:

◮ sequential recombination is now ‘fastest kid on the block’

◮ proper (seedless) cone algorithm is now a reality, eliminating need for
hacks & approximations

Different jet algorithms starting to be compared quantitatively

◮ Measures of jet areas (→ surprises: cone area not πR2)

◮ Hadronisation has simple fairly universal 1/R behaviour

◮ Many comparisons in progress for Les Houches Workshop

Better understanding → better results

◮ Area-based pileup subtraction for a range of algorithms

◮ jet flavour algorithms improves b-jet uncertainties by factor 3
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